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By analyzing the strength of a photon-fermion coupling using basic scattering processes we calculate the
effect of a velocity anisotropy on the critical number of fermions at which mass is dynamically generated in
planar quantum electrodynamics. This gives a quantitative criterion which can be used to locate a quantum
critical point at which fermions are gapped and confined out of the physical spectrum in a phase diagram of
various condensed-matter systems. We also discuss the mechanism of relativity restoration within the symmet-
ric quantum-critical phase of the theory.

DOI: 10.1103/PhysRevB.79.214525 PACS number�s�: 74.72.�h, 74.78.Bz, 11.30.Rd, 12.20.�m

I. INTRODUCTION

Quantum electrodynamics �QED�, the quantum theory of
radiation and its interaction with matter, is a subject with far
reaching impact in physics, from the calculation of the mag-
netic moment of the electron1 to the widespread use of dia-
grammatic tools in every corner of theoretical physics. How-
ever, despite this long tradition as a central paradigm in
physics, QED continues to confront us with many new chal-
lenges as its modern reincarnations emerge as effective theo-
ries of strongly correlated many-body problems, from quan-
tum spin liquids to high-temperature superconductivity to
graphene. Back in Feynman’s day, we would have been very
surprised if someone were trying to solve a relativistic prob-
lem with two speeds of light. These days, such problems are
actually ubiquitous in modern theoretical physics, one ex-
ample being the effective theory of low-energy excitations in
a correlated d-wave superconductor. That theory is equiva-
lent to an anisotropic quantum electrodynamics in 2+1
dimensions,2,3 in which different “speeds of light” appear
naturally. Furthermore, there are other systems in which the
low-energy description reduces to different versions QED3,
such as various forms of quantum spin liquids4,5 or the phys-
ics of graphene layers.6 All of these different problems share
a common feature: they have a nodal structure that resembles
a relativistic spectrum for the low-energy excitations. How-
ever, a distinctive feature of the QED3 particularly relevant
for cuprate superconductors is that it contains a significant
intrinsic anisotropy, which exists due to the difference be-
tween the Fermi and gap velocities �vF ,v��.

It is known that the fermionic anisotropy, �=vF /v�, is
irrelevant in the perturbative renormalization-group �RG�
sense,7 as long as the system is in the symmetric phase of
QED3. This is the quantum-critical phase of the theory, in
which strongly interacting massless fermions acquire anoma-
lous power-law behaviors in their various correlation func-
tions. The anomalous dimension exponents characterizing
this unusual state are universal and typically depend only on
the total number of fermion flavors N. This however is true
only as long as N�Nc, where Nc is the critical number of
fermions at which the fermion mass is dynamically gener-
ated via the mechanism of spontaneous chiral symmetry
breaking �CSB�. Once CSB takes place, the fermions are
gapped and confined out of the physical spectrum. This her-

alds a different massive phase of the theory which typically
translates to a different state in the underlying condensed-
matter system. The results of Ref. 7 are generally valid for
arbitrary anisotropy as long as the number of fermions N is
sufficiently large or for small anisotropy when N is greater
than Nc of the isotropic case.

Evidently, Nc is an important number within the theory,
not in the least because antiferromagnetic order in effective
theories of high-temperature superconductors and quantum
spin liquids generically arises via the above nonperturbative
phenomenon of CSB—for example, in the context of cu-
prates, the chiral mass generation corresponds to the onset of
a spin-density-wave order from within a quantum-disordered
d-wave superconductor8,9 while it describes the formation of
the Neél antiferromagnetic state and a whole family of other
order states in the context of quantum spin liquids.4,5 Unlike
the exponents of the critical massless phase, however, Nc
itself is not universal. Consequently, an important question
arises within the anisotropic QED3: to what extent is the
critical number of fermions, Nc, which defines the boundary
between broken and unbroken chiral symmetry, affected
when such anisotropy is present?

In this paper, our goal is to provide an answer to this
question. Of course, ours is not the answer, for two reasons.
First, since QED3 is a strongly interacting theory its exact
behavior is beyond our reach. Second, since Nc is not uni-
versal there are actually many different Nc’s: the nominally
irrelevant couplings within the QED3 theory of a quantum-
disordered d-wave superconductor8,9 are very different than
those of lattice-based quantum spin liquids.4,5 Furthermore,
both these Nc’s are different from the intrinsic Nc of the pure
QED3 field theory considered here �defined through Balaban-
Jaffe regularization,10 for example�. However, all these is-
sues notwithstanding, even in the absence of the exact solu-
tion, it is still possible to make a rather accurate
determination of the parametric dependence of Nc on the
anisotropy, once an “exact” Nc is known for the isotropic
case from a different source, say, from numerical simula-
tions. Our goal is to devise a criterion for determination of
Nc within the anisotropic QED3 which, while not exact, still
provides a rather accurate description of how the CSB
boundary changes as a function of the parameters of the
theory. The philosophy here is similar to the one behind the
ubiquitous Lindemann11 criterion, originally proposed to pre-
dict the melting point of a solid. While not exact, the Linde-
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mann criterion has proven itself a remarkably accurate and
useful in a wide range of situations, from classical to quan-
tum solids, from Wigner crystals to Abrikosov vortex lat-
tices.

To devise our criterion, we point out that mass generation
is a consequence of the fermion-photon coupling strength in
QED. This strength is generally renormalized from its bare
value by virtual polarizability of the vacuum. Relying on this
fact, we propose a natural way to measure the strength of the
gauge field by focusing on the matrix element that represents
processes in which one photon is exchanged between two
fermions. We stipulate that the CSB and mass generation
take place when this matrix element exceeds certain critical
value. Within the isotropic QED3 this is manifestly an exact
statement—the only unknown is the actual value of Nc which
we can either infer from a separate calculation or borrow
from numerical simulations.12–14 Once our “Lindemann cri-
terion” is calibrated in this fashion, we proceed to evaluate
the appropriate matrix element in the anisotropic theory and
propose that the CSB takes place when this matrix element
exceeds the same critical value.

Following the above procedure, our criterion allows us to
derive the following main results: first, we show that Nc is
not just a function of the anisotropy � but also a nonmono-
tonic function of vF and v� themselves. The reason behind
this peculiar behavior is the existence of a third relevant
velocity in the theory, the speed of light, cs, which naturally
appears in the Maxwellian action for the gauge field. We
confirm our findings for v��cs by using the Schwinger-
Dyson �SD� equation within the Pisarski approximation;15

both results show the same functional dependence on v� in
this regime. Another result is that the critical number of fer-
mions decreases even for �=1, as long as vF=v��cs. Thus,
in the context of the QED3 effective theory of underdoped
cuprates, we generically expect a nonsuperconducting, non-
magnetic pseudogap state to intrude prior to the emergence
of antiferromagnetism as d-wave superconductor is under-
doped toward half filling.

II. CRITERION AND CALCULATION

We start by defining the form of the anisotropic QED3
Lagrangian and the main physical quantities that will be used
in our calculations. The Lagrangian is

LAniso = �
l=1

N

�̄lv�
�l����i�� − a���l + L�a��x�� , �1�

where �̄l are four component spinors and a� is a gauge field.
In condensed-matter environment, Eq. �1� is the low-energy
effective theory of some strongly correlated electron system.
For example, in a phase-disordered d-wave superconductor,
the gauge field a� couples nodal Bogoliubov–de Gennes–
Dirac fermions to fluctuating quantum vortex-antivortex
pairs through a Maxwellian action L�a��x��. �� are the stan-
dard gamma matrices, such that ��	 ,���=
�	, and v�

�l� is de-
fined as �1,vF ,v�� and �1,v� ,vF� for nodes l=1,2, respec-
tively. Fermi and “gap” velocities, vF and v�, define
fermionic anisotropy at each node.

To make further progress we first focus our attention on a
particularly simple case: the noninteracting one �a�=0�. This
case is equivalent to saying that the phase is rigid or that the
departure point in our analysis is the fully ordered supercon-
ducting state. In that case Eq. �1� is reduced to

LDirac = �
l=1

2

�̄lv�
�l����i�� + m��l, �2�

where a mass term has been introduced only for normaliza-
tion purposes. In the end our results will be robust in the
m→0 limit.

The equations of motion for these noninteracting Dirac
fermions are

�− v�
�l���i�� + m��l = 0 �3�

with l=1,2. From this expression it is clear that the task of
solving Eq. �3� can be performed independently for each
fermion flavor 1 and 2. Now, if we focus on l=1, we can
reduce the anisotropic equation of motion to the isotropic
one using a simple change in variables ��=�, x�=vFx, and
y�=v�y. It is worth remarking that the intrinsic fermionic
anisotropy cannot be removed in the case of the real d-wave
superconductor once the gauge field is present, as can be
seen from the definition of v�

�l�.
We now outline how a typical perturbative approach for

computing the effect of coupling to the gauge field works:
starting from the solutions obtained for the problem in which
a�=0, namely, �1�x�� and �2�x��—both having the anisotropy
encoded in their spatial oscillations—we will perturbatively
introduce the field a�. First, we choose our free solutions for
each node in the form �l

+�x��=sr�m ,0�exp�−imt� and
�l

−�x��= tr�m ,0�exp�+imt�, where for convenience we have
defined s1�m ,0�= �1,0 ,0 ,0�, s2�m ,0�= �0,1 ,0 ,0�, t1�m ,0�
= �0,0 ,1 ,0�, and t2�m ,0�= �0,0 ,0 ,1�. The eigenstates of Eq.
�3� are then

�1�x� = �
p�r=1,2

� m

VEp�
	1/2

�brp� s̄r�p��e−ip� ·x� + drp� t̄r�p��eip� ·x�� , �4�

where brp� and drp� are standard fermionic annihilation opera-
tors, while p� and r are the momentum and spinor indices,
respectively. In the case of decoupled nodes, when a�=0, all
the information about the anisotropy is encoded in the expo-
nential factor. Now, for finite momentum we can use the
ansatz �1

+�x��=sr�k��exp�−ik� ·x��� and �1
−�x��= tr�k��exp�+ik� ·x���,

where x��= �� ,vFx ,v�y� for node 1. The spinors sr�k�� and
tr�k�� can be found directly from the equation of motion

�k” − m�sr�k�� = 0, �k” + m�tr�k�� = 0, �5�

where k”=��k�. Thus, applying �k”+m� and �k”−m� to sr�m ,0�
and tr�m ,0�, respectively, we can generate the needed solu-
tions.

Using these free fermions in the Heisenberg picture, we
now introduce the gauge field by employing the well-known
formal solution of the scattering matrix S, equivalent to
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S = T
exp�− i� d2+1xHI�x��� , �6�

where T and : are the time-ordered operator and the normal
order operation, respectively. The interaction Hamiltonian
density that couples fermion fields to the gauge field is given
by

HI�x�� = �
l=1

2

:�̄lv�
�l���a��l: . �7�

Now, as usual, we want to analyze the matrix element
�f �S�i�, where both the final and initial state are assumed to
be eigenstates of the unperturbed Hamiltonian. Using the
Heisenberg representation of the free fields ��x�� and the
Wick’s theorem, we recognize that the only relevant dia-
grams are the interactions photon-fermion and fermion-
fermion, the so-called direct scattering and the Möller scat-
tering. The calculation simplifies here because, due to its
fluctuating nature, the contribution of a� to the first term of
the S matrix expansion forces the said matrix element to
vanish. Consequently, the leading contribution relevant for
our purposes comes from the second-order term where the
contraction of a��x�1� with a	�x�2� is nothing else but the pho-
ton propagator D�	�x�1−x�2�, which is the real-space inverse
of the polarization function

��	 = �
n

N

16vFv�

�k�g�
�n�k�g�	

�n� −
g��

�n�k�g	�
�n�k�

k�g�
�n�k

	 , �8�

where the diagonal nodal “metric” g�	
�n� is defined7 by g00

�1�

=g00
�2�=1, g11

�1�=g22
�2�=vF

2 , and g22
�1�=g11

�2�=v�
2 , and �	

�n�=�g�	
�n���.

We will now demonstrate that this second-order element of
the perturbation theory can be used to gainfully define the
“strength” of the fermion-photon interaction and determine
the critical number of fermionic flavors Nc���, without ever
solving the Schwinger-Dyson equation, even though a per-
turbative approach itself is condemned to failure.

In order to accomplish this, let us focus on the mass-
generation problem. It is well known that Schwinger-Dyson
equation, Fig. 1�a�, has a nontrivial solution �m�0� once the
initially soft photon �factor 1 /N in the large N limit� be-
comes harder at a critical number of fermions Nc with 3
�Nc�5.12,15–17 That means for N�Nc mass will be dynami-
cally generated and therefore chiral symmetry would be
broken.

The existence of anisotropy makes analyzing the birth of
a gapped state through the mechanism of mass generation
using the Schwinger-Dyson formalism almost impossible

with the noteworthy exception of the isotropic limit and the
so-called small anisotropy case �vF=1+
 and v�=1, where

�1�.7,18,19 Our aim is to explore mass generation for arbi-
trary anisotropy because this is the physically relevant re-
gime. Our technique is based on the observation that as we
lower N we are effectively making the photon interaction
stronger. This is clear because the photon propagator con-
tains a screening factor 1

N . From this simple observation we
can see that mass generation is a phenomenon that is intrin-
sically tied to the strength of the gauge field �photons�. Put
simply, we can translate the meaning of Nc into the following
statement, which clearly is a necessary condition for mass
generation: if the photon-exchange interaction is stronger
than some threshold value Ac then the fermion mass will be
dynamically generated. This assertion clearly lacks the pre-
cision of a mathematical theorem but we now proceed to
demonstrate that it has the practical virtue of a useful
criterion.

The problem that we are facing is straightforward: how
can we usefully quantify the strength of the gauge field? The
simplest way to measure the strength of a photon is to ana-
lyze a process in which one photon is exchanged. For the
sake of simplicity, we will analyze the fermion-fermion scat-
tering mediated by one photon, as shown in Fig. 1�b� which
corresponds to the second-order term in perturbation theory.
Thus using the Nc borrowed from the isotropic limit, we
define Ac= �i�S�2��f��Nc��=1��, the matrix element of the S
matrix evaluated at the isotropic limit, as the natural candi-
date to measure the strength of the photon. We can safely say
that in an anisotropic theory mass will be generated at the
critical strength defined by Ac.

Thus solving the equation, Ac= �i�S�2��f��Nc���� for Nc���,
we will find the influence of anisotropy on the critical num-
ber of fermion flavors. In the isotropic case, the choice of
node will not make any difference, however in the aniso-
tropic case the situation will be quite different. Regarding the
symmetries of the problem we must analyze the invariant,
�i�S�2��f��vF ,v��+ �i�S�2��f��v� ,vF� because nodal particles
can be born indifferently in nodes 1 or 2. This quantity is
invariant under the transformation vF↔v�, which is a physi-
cal symmetry of this problem.

We now proceed to compute the first nonzero matrix ele-
ment �i�S�2��f�. The second-order process following from the
S-matrix term, Eq. �6�, is

S�2� � T�� HI�x�1�HI�x�2�dx1dx2 , �9�

which can be written �integration with respect to x1 and x2 is
implicit� as a sum of terms of the type

T�:�̄1�x1���
�1�a��x1��1�x1�::�̄1�x2��	

�1�a	�x2��1�x2�:� .

�10�

By applying Wick’s theorem to the previous expression
terms with and without contractions are obtained. However,
due to the fluctuating nature of the gauge field most of those
terms will vanish. The survivor will be the one containing
the contraction of the gauge field with itself. Thus, the prob-
lem is reduced to compute the matrix element

p−k
p

p
p−k

k

k

p p

p−k

(a) (b)
+

+ ...

FIG. 1. �a� Diagrammatic form of the Schwinger-Dyson equa-
tion at one-loop approximation. �b� Diagram used to measure the
strength of a photon.
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:�̄1�x1���
�1��1�x1��̄1�x2��	

�1��1�x2�D�	�x2 − x1�: . �11�

To evaluate such matrix element we must define the initial
and final states of the system �i� and �f�. As the strength of
the photon should be independent of the states that we use to
measure it, we are free to use

�i� = br1p�1

† br2p�2

† �0� and �f� = br1�p�1�
† br2�p�2�

† �0� , �12�

which we already know from the free theory. The relevant
matrix element is

1

N
�i�S�2��f���,vF,v�� �

1

v�vF
� d3k� 1

pi0�pi0 − k0�	
�Q��p� i − k�,p� i�D�	�g�1�k��

�Q	�p� i,p� i − k�� , �13�

where Q��P� , p��= s̄�P� ���
�1�s�p�� with s̄=s�0. The integral is to

be performed over all the allowed k space but we have one
constraint that is the spectrum of the Dirac fermions, k0
=��vFkx�2+ �v�ky�2, which allows us to further reduce the
evaluation of this integral.

The integration limits are fixed from the condition that the
momentum transferred in the processes shown in Fig. 1�b�
cannot be larger than the momentum of the incident particle,
p� i. We have set px= py =� as an upper cutoff. We have also
verified that the only effect of choosing a different cutoff for
different spatial directions is that it makes the convergence
slower. Thus, using the invariant measure of the strength of
the gauge field, it is straightforward to show that the ratio
between critical number of fermions at velocities vF and v�

with respect to the isotropic point is

 =
�i�S�2��f���,vF,v�� + �i�S�2��f���,v�,vF�

2�i�S�2��f���,1,1�
. �14�

Thus, the critical number of fermions for the anisotropic
theory is given by the product of �vF ,v�� and the critical
number of fermions at the isotropic point Nc�1,1�. In prin-
ciple, this measure of the strength of the gauge field depends
on the initial momentum of the particles but it turns out that
the ratio between the strength of the gauge field with aniso-
tropy and the strength of the gauge field without anisotropy
�=1 is not sensitive to the momentum of the incident fermi-
ons, p� i. In fact, all the calculated quantities converge to a
fixed value for a fairly low-momentum cutoff, �. It is impor-
tant to remark that  is gauge invariant due to the transverse
nature of the photon.

Indeed we can do better. By isolating the leading diver-
gent behavior of the scattering amplitude we have obtained
that in the �→� at the leading order in the large N approxi-
mation, the ratio  is given by

�vF,v�� = �1��1 + v�
2 E�v�

2 − vF
2

1 + v�
2 	 + �1 + vF

2E�vF
2 − v�

2

1 + vF
2 	

+ �2�K�vF
2 − v�

2

1 + vF
2 	 + K�v�

2 − vF
2

1 + v�
2 	 , �15�

where

E�m� = �
0

�/2

�1 − m sin����1/2d� ,

K�m� = �
0

�/2

�1 − m sin����−1/2d� ,

�1 = − 2�1 – 2�vF
2 + v�

2 � − vF
2v�

2 + vF
4 + v�

4

3�2�vF
2v�

2 	 ,

�2 =
2 – 3�vF

2 + v�
2 � + �vF

2 − v�
2 �2 + vF

4v�
2 + v�

4 vF
2

3�2�vF
2v�

2 ��1 + vF
2��1 + v�

2 �
�16�

are the elliptic functions of first and second kind, respec-
tively, and the prefactors are polynomials that are symmetric
under vF↔v�. Thus  is explicitly invariant under the trans-
formation vF↔v� as it must be.

An important case is the one in which there is no fermi-
onic anisotropy, i.e., vF=v�. In this case all the integrals can
be performed and the full divergent behavior of Eq. �13� can
be isolated by going to cylindrical coordinates as the x↔y
symmetry suggests. The result is just the limit behavior of
Eq. �15� when taking vF=v�. In that limit the dependence on
the fermionic velocities becomes particularly simple,

 =� 2

1 + v�
2 . �17�

To test the accuracy of our technique, the result is compared
with the exact numerical integration in Fig. 2, showing ex-
cellent agreement. For low speeds v��1, our result suggests
that the critical number of fermions increases. We discuss
this case in more detail below. On the opposite limit when
the gauge-field velocity is small compared with the other two
velocities the critical number of fermions goes to zero.

A nontrivial dependence on the gauge-field velocity was
also found; there are three different regimes depending upon
the value of vF, with respect to cs, as shown in Fig. 3. For
vF�cs, the critical number of fermions increases, reaching
unexpected values for large anisotropy, leading to a gapped
state in this sector. On the other hand for vF�cs, Nc de-
creases and we can generically expect gapless excitations.
The most unexpected result occurs if vF=cs; in this case
Nc����Nc�1� for ��1. Even though we found small devia-
tions with respect to the isotropic value near to �=2, they do
not change the integer part of Nc �see also Fig. 4�. Thus, in

1.5

1

0.25
54321

β

vF

Numeric
Analytic

FIG. 2. Comparison between the numerical and analytical cal-
culation of  in the case for which vF=v�.

CONCHA, STANEV, AND TEŠANOVIĆ PHYSICAL REVIEW B 79, 214525 �2009�

214525-4



this regime large anisotropy will be completely irrelevant.
Using Nc�1�=4, which is the integer closest to the gauge-

invariant critical number of fermions 128 /3�2 found by
Nash,16 we have obtained a phase diagram in the �vF ,v��
space, Fig. 5. In this plot it is clear that if both velocities are
smaller than cs, the critical number of fermions never goes to
zero. However, outside that square region Nc→0 for high
anisotropies.

To show how important it is to consider the scale defined
by cs we have also plotted ��� for different values of vF
�0.5, 1, and 5.0� that we kept fixed as v� was varied �see Fig.
4�. In this plot we make evident that cs is a relevant param-
eter which we are allowed to set to 1, however the detailed
behavior of the system is not a simple function of the aniso-
tropy � but an explicit function of both parameters vF and
v�.

In order to test our results we compare them with recent
numerical work that has been done by Thomas and Hands
�T-H� �Ref. 12� in an attempt to understand how anisotropy
can modify the properties of QED3. The lattice �Euclidean�
version used by T-H includes an anisotropy which is in-

tended to mimic the continuum model in the incarnation pre-
sented by Lee and Herbut.18 The QED3 theory presented in
Lee’s article is parametrized in terms of two quantities 

=�vFv� and �=vF /v�. T-H have used an extended lattice
model similar to the one used by Dagotto et al.20 that in the
continuum limit resembles the behavior of Eq. �1�. In order
to perform the simulation the action used was

S = �
i=1

N

�
x,x�

a3�̄i�x�Mx,x��i�x�� +


2
a3��	

2 �x� , �18�

where the anisotropy was introduced in the fermion matrix

Mx,x� =
1

2a
�
�=1

3

���x��
x�,x+�̂Ux� − 
x�,x−�̂Ux��
† � + m
�	

�19�

and

���x� = �����x� , �20�

���x� = �− 1�x1+¯+x�, �21�

with x1=x, x2=y, and x3=� is the Kawomoto-Smit phase of
the staggered fermion field. The lattice spacing is a. An im-
portant definition is that of the anisotropy factors, �x=�−1/2,
�y =�1/2, and ��=1. This definition is important for our pur-
poses because it shows that T-H lattice theory does not keep
the flavor symmetry of the model relevant for cuprates.2,3,7,12

Regardless of this intrinsic drawback of the method we will
show that it still mimics the qualitative behavior of the
flavor-symmetric anisotropic QED3 at least in the low-
anisotropy limit.

In their numerical simulation T-H have a single parameter,
which is equivalent to �=vF /v� and as an extra constraint
they have set 
=1. This choice implies that vF=1 /v� and
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FIG. 3. �Color online� The calculated ratio . The minimum
value of vF and v� is 0.15 and the maximum is 1.5. This graph
shows that Nc is not a simple function of � but a more complex
function of vF and v�.
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FIG. 4. Ratio between the critical number of fermions in the
anisotropic theory and its equivalent within the isotropic theory as a
function of anisotropy, ���. The three curves represent the three
regimes found: Nc����Nc�1� if vF�1, Nc��� /Nc�1� approaches a
constant �1 if vF=1, and Nc��� increases for increasing � if vF

�1.
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FIG. 5. �Color online� Phase diagram for the critical number of
fermions in the velocity space. We have set the critical number of
fermions for the isotropic theory at Nc=4. Inside the square defined
by the lines vF=1 and v�=1 the critical number of fermions never
vanishes. The thick blue line corresponds to vF=1 /v� and repre-
sents the one-dimensional domain simulated by Thomas and Hands
�Ref. 12�.
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therefore �=1 /v�
2 . That means that T-H have simulated a

one-dimensional domain of the whole parameter space
�vF ,v��. That domain is shown in Fig. 5 as a thick blue line.
In order to make a link between the amount of condensate

��̄�� and its relation with Nc��� we will assume that the
functional form of the dynamically generated mass does not
change16,17 as we introduce anisotropy in the system. This
can be explicitly checked in the small anisotropy limit.19 As
long as we are inside the broken phase and near to the
boundary between broken and unbroken phases, the mass has
the following functional form:

m = mo exp� −2�

�Nc�vF,v��
N

−1	 , �22�

where mo may depend on N. However, what is important is
how to define the boundary between the massless phase and
the massive phase. This is done by solving Eq. �22� when
m=0. We can also interpret this equation in the following
way: for a fixed number of fermions N this equation allow us
to understand how the mass changes as a function of Nc���
when N is close to Nc. In fact, for any number of fermions
when Nc���=N, it is prohibited to have any condensate. That
means that the critical anisotropy �c that solves m��c�=0 for
any value of N is the same as the critical anisotropy that
solves Nc��c�=N. Hands reported that such a critical aniso-
tropy �c�4 in a 163-site lattice simulation, which is in
agreement with the critical value found by us, �c�3. This
decreasing behavior is in contrast to the one found in Ref.
18, where it was claimed that Nc increases as a function of
the bare anisotropy. Taking into account that the lattice simu-
lation is a nonperturbative method that does not relay in any
educated ansatz, T-H results strongly support our view of the
phenomenon. Still, we should mention that the critical aniso-
tropy calculated by T-H using the anisotropic scaling is not,
in the strict sense, quantitatively accurate in the context of
cuprates for two reasons. First, the scaling used breaks the
crystal isotropy, or, in different words, their simulation is not
invariant under flavor exchange. Second, they assumed that
the two fermionic velocities change little around the gauge-
field velocity cs=1. Due to the collective nature of phase
defects we expect that cs�vF in cuprates.21

On the other hand lattice simulations are always per-
formed in finite lattices and therefore the correct comparison
with our results should be done by considering both an upper
cutoff and a lower cutoff. In principle we are free to make
the upper cutoff as large as we want but the lower cutoff
dependence may be important when comparing our results
with finite lattice simulations.22 Setting the upper cutoff as
�u=1 then the lower cutoff should be �d�1 /L, where L is
the size of the system. As we change the lower cutoff we
have found no significant differences in our results as it goes
to zero.

We have also investigated the effect of the breaking of the
flavor symmetry in our scheme. For this purpose we have
used only one amplitude for the photon so that the final
kernel is not invariant under vF↔v�. In this case, we have
obtained the same qualitative behavior as shown in Fig. 6
and the small negative slope at the isotropic point, detail that
is in agreement with the results shown by T-H in Fig. 5 �Ref.

11�. This clearly is a symptom of the breaking of flavor sym-
metry. However, there is a very important issue that emerges
once we arbitrarily break flavor symmetry. The function 
starts to pick up a phase which is unphysical.  must be a
real number as Nc is. This makes evident that even with the
simplest interaction between fermions the flavor symmetry is
needed in order to obtain a meaningful value of . This
observation suggests that numerical simulations that preserve
flavor symmetry are the only reliable way to extract accurate
critical values. However, we must encore that the qualitative
behavior of T-H simulation agrees with the physical picture
proposed in this paper. Looking at the obtained phase dia-
gram, Fig. 5, the question that naturally arises is, which re-
gime is the physically relevant one? Clearly our answer will
depend on the ratio vF /cs. At finite but still small tempera-
ture T we can use the continuum vortex-antivortex Coulomb
plasma model in order to estimate the gauge-field velocity.
Identifying the speed of light from the Maxwellian form of
the action for the gauge field we find that cs��nl /T at finite
T, where nl is the density of vortices.3 Thus for any T�0 as
we approach the superconducting state nl→0 and thus cs
→0, resulting in a protected symmetric phase. As nl in-
creases, for small but finite T, cs may reach very high values,
but if those values are larger then vF is unclear. If we go to
the line T=0 quantum fluctuations will drive the system into
a region in which the value of cs will depend on the specific
value of the dynamical critical exponent z, which in some
simplified calculations was adopted to be 1. The more strik-
ing problem about identifying the precise value of cs is that
this velocity is a function of the correlation length cs
= f��sc� but at the same time we know that �sc=�sc�x ,T�, thus
a self-consistent treatment or knowledge of the correlation
length from experiments will be needed to settle this problem
and give an accurate phase diagram that identifies the rel-
evance of these different regimes.

To provide further evidence of our findings we have also
reanalyzed from a different perspective the case in which
fermionic anisotropy is one. We have applied Pisarski’s
technique15 to find the qualitative behavior of the dynami-
cally generated mass as a function of v�.

We will assume that ��p����0�. Thus in the appropriate
integration interval ���0� ,�� the mass will be a constant.
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FIG. 6.  within the domain defined by the blue line of Fig. 5.
The continuous line represents the flavor-symmetric calculation.
The dotted line is the nonsymmetric calculation. For the latter case
we have only plotted the real part because the breaking of the flavor
symmetry introduces a small but persistent imaginary part.
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This assumption is certainly incorrect, as was shown by Ap-
pelquist et al.16,17 However, it will allow us to compare the
qualitative behavior of the mass as a function of v� for the
case in which vF=v�. In this case the sums can be performed
analytically by going to cylindrical coordinates instead of
spherical ones. The integration was performed over the shell
defined by a lower cutoff ��0� and an upper cutoff �. Thus
the Schwinger-Dyson equation

��n��p�� =� ��
�n�D�	�p� − k���	

�n���n��k��

k�g�	
n k	 + ��n�

2 �k��
d3k �23�

can be solved in this rough approximation and the result is

��0� � exp�−
N�2v�

2

8�v�
2 − 1

	 , �24�

which is a real number as long as v��1. Thus as long as the
neutrinos move faster than the photons the generated mass
indeed does depend on v�.

We expect that—given the fact that the decay factor in
Pisarski’s result is of order Nc—the correction found for that
factor will give us the functional behavior of Nc�v��. Thus,
as v��1 we would expect that Nc�1 /v�. This is consistent
with the result obtained from the proposed criterion, Eq.
�17�. However, we should warn the reader that even though a
mathematical expression can be obtained for v��1 the na-
ture of the system will change in this case, casting doubt on
the validity of our criterion in that region. Indeed, from SD
equation at the Pisarski-level approximation for low fermi-
onic velocities, the self-energy will acquire an imaginary part
which can be interpreted as leading to a confinement23 for
fermions of the theory. This instantly calls into question the
validity of using a pure plane-wave-type solution for the
computation of the scattering process.

In this approximation, the nature of the solution changes
considerably at the point where v�=1. That is so because the
radial integral gets a logarithmic contribution that is propor-
tional to �1−v�

2 , which overwhelms the leading contribution
at the isotropic point. Alternatively, in more physical terms,
if photons and massless fermions move at precisely the same
speed this is “infinitely” different than having the photons
that move faster than fermions. In the latter case it is natural
to expect an “overscreening” behavior, in which constant ex-
change of fast photons ultimately leads to confinement. On
the opposite side, with fermions moving faster than photons,
we expect photons to be less effective in screening the fer-
mions and thus less effective in generating their mass. We
have also checked that in the isotropic limit the Pisarski’s
answer obtains and thus our results are not an artifact of the
parametrization used.

So far, we have shown that mass generation has a nonuni-
versal behavior, which arises due to the breaking of Lorentz
invariance. Thus, it is natural for a cautious reader to wonder
if, once N�Nc, the renormalized effective low-energy theory
is in fact Lorentz invariant or not. To begin with we empha-
size that the fact that � flows to one by itself does not guar-
antee that the full Lorentz invariance will emerge unless both
cs and vF are set equal; this in effect acts as an extra con-

straint. This is shown in Figs. 7 and 8 where it is easy to see
that even thought �→1 neither vF nor v� converge to cs
=1 unless the above-mentioned extra constraint is imposed.
To show that the full Lorentz invariance is indeed restored
we must prove that both fermionic velocities vF and v� flow
to cs=1 independently.

It is easy to see that Lorentz invariance can still be broken
even with the fermionic anisotropy set to unity. Let us as-
sume that the bare values of the Fermi and gap velocity are
equal to each other but different from the gauge-field veloc-
ity, i.e., vF=v�, but vF�cs. The Lagrangian for this simpli-
fied theory is24,25

L = �̄1��0��� + ia�� + �1vF��x + iax� + �2vF��y + iay���1

+ �1 ↔ 2� +
1

2e2
� �ax

�y
−

�ay

�x
	2

+ � �a�

�x
−

�ax

��
	2

+ � �a�

�y
−

�ay

��
	2� . �25�

2
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FIG. 7. The RG  function for vF �in arbitrary units� computed
using the same method as in Ref. 7 but without setting v�=cs=1.
This plot shows the parametric dependence of the fixed point on the
value at which v� is initially set in this calculation.
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FIG. 8. The corresponding RG flow of vF and v� when charge
renormalization is not taken into account. A line of fixed points at
vF=v� is apparent.
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By simple rescaling ��=�, x=vFx�, y=vFy�, a��
� =a�, ax�

�

=vFax, and ay�
� =vFay we can transform this theory into a new

theory in which the fermionic part of the action remains fully
isotropic but an anisotropic Maxwellian term appears:

1

2e2vF
4 � �ax�

�

�y�
−

�ay�
�

�x�
	2

+
1

2e2vF
2
� �a��

�

�x�
−

�ax�
�

���
	2

+ � �a��
�

�y�
−

�ay�

���
	2� . �26�

Thus, the effect of having vF�cs reduces to anisotropic cou-
plings in the Maxwellian self-action of the gauge field. We
denote these couplings as e�

2�e2vF
4 and e�

2 �e2vF
2 . These two

couplings can be interpreted as two anisotropic charges.
Such anisotropic charges can change the value of the critical
number of fermions in the original theory, as already shown
in Eq. �24�. In contrast, within the isotropic QED3, the criti-
cal number of fermions does not depend on e2. This is true as
long as we have only one coupling constant, but once we
introduce two different couplings this pleasing behavior is
lost. This simple example shows that we can restore Lorentz
invariance in the fermionic part of the action at the expense
of breaking the Lorentz invariance of the Maxwellian part.

To summarize, the above discussion shows that at a bare
level there are two intrinsic anisotropies in this problem; � is
the fermionic one while �= �e� /e�� is the Maxwellian one. e�

and e� are the couplings in the temporal and spatial direc-
tions, respectively. Thus at a bare level of the QED3 theory
relevant for the cuprates there are four coupling constants vF,
v�, e�, and e�. We will now show that even though they
contain anisotropy both in the fermionic and Maxwellian
terms, in the large N limit the relativity is ultimately restored,
without any assumptions about the size of the anisotropy.

To make good on the above claim notice that the effect of
fermions on photons is still described by Eq. �8�. However,
the gauge-field stiffness is now

��	
�0� =

1

2e�
2 �̄�
��̄��	k�k
, �27�

where the anisotropic Levi-Civita symbol is defined as �̄���

=����, �̄x��=��x��, and �̄y��=��y��. Thus, the effective La-
grangian of the theory can be written as

LAniso =
1

2
���	

�0� + ��	�a��k�a	�− k� , �28�

where the effect of fermions has been introduced through the
polarization function.

This expression allows us to find the renormalized cou-
plings, comparing the original bare gauge-field stiffness with
the screened one:

��	
�R� = ��	

�0� + ��	. �29�

We find that to the lowest order in 1 /N the renormalized
couplings are

� 1

e�
2	

R

= � 1

e�
2	 +

N

16k̄
vFv�, �30�

� 1

e�
2 	

R

= � 1

e�
2 	 +

N

16
� 1

k�1�
vF

v�

+
1

k�2�
v�

vF
	 , �31�

where 1 / k̄=1 /k�1�+1 /k�2� and k�i�=�k�g�
�i� k.

The above one-loop renormalization of the anisotropic
charges allows us to set up the renormalization-group �RG�
equations for the beta functions describing the flow of differ-
ent couplings. These equations are rather complicated and
we have been able to fully solve them only numerically.
However, the following result is rather simple and can be
extracted in an analytic form; on general grounds we expect
that the nontrivial infrared fixed point should remain once we
introduce the anisotropy, even though its position in param-
eter space may change. In order to find the value of the
renormalized couplings at the fixed point, we analyze the
difference between the renormalized couplings of the Max-
wellian action

� 1

e�
2 −

1

e�
2 	

R

= � 1

e�
2 −

1

e�
2 	 +

N

16
� 1

k�1��vFv� −
vF

v�
	

+
1

k�2��v�vF −
v�

vF
	 . �32�

If we now rearrange our RG equations so as to focus on the
beta function for this difference between the renormalized
charges, e�−e�

, the above equation implies that

e�−e�
�

N

16
��vFv� −

vF

v�
	

k�1� +
�v�vF −

v�

vF
	

k�2� � + � ¯ � ,

�33�

where �¯ � can be rewritten in terms of beta functions for all
other couplings and thus must vanish at the putative fixed
point. Clearly, noting that N is an arbitrarily large number,
and that k�i� share the same sign, it follows that

vF
�R�v�

�R� −
vF

�R�

v�
�R� = 0 �34�

from where v�
�R�=1 and given that the theory is fully invari-

ant under the exchange vF↔v�, it follows that vF
�R�=1. Put-

ting this information back in the flow equations it is clear
that 1 /e�

2 and 1 /e�
2 themselves diverge with the same slope

at the fixed point and therefore their ratio �= �e� /e��→1.
This result shows that Lorentz invariance is restored and thus
the previous results4,5,7 remain valid. However, we have
made it clear that the physics behind the restoration of full
Lorentz invariance follows a path more subtle than previ-
ously explored: at the infrared fixed point the relativity is
restored due to the interplay between the velocity and charge
renormalizations, the velocity renormalization by itself being
insufficient to fully restore relativity of the theory.

III. CONCLUSIONS

We have proposed a simple criterion that allows an ex-
plicit computation of the critical number of fermions Nc in a
theory that contains intrinsic anisotropies. We have checked,
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at the Pisarski’s level approximation, that this criterion cap-
tures the functional dependence of Nc�v���1 /v� in the case
in which an explicit expression can be obtained from analytic
calculations.

Our criterion suggests that lattice simulations should be
performed in such a way that important symmetries of the
theory, namely, vF↔v�, are protected. Otherwise, there is a
danger of obtaining spurious results. In lattice QED3, it
seems worthwhile to investigate the existence of a possible
confined phase in the region of the parameter space where
fermionic velocities are small compared with the gauge-field
velocity. Another venue that remains to be explored is the
possible usefulness of similar criteria for the analysis of CSB
or other nonperturbative phenomena in other physical sys-
tems that also feature anisotropic couplings.

Finally, we have shown that the velocity anisotropy in
�2+1�QED does affect the number of critical fermion flavors
Nc at which chiral symmetry is broken due to the phenom-
enon of mass generation, even though the large N theory
remains fully relativistic in its critical phase. Surprisingly, Nc

is a nonmonotonic function of vF and v�, and, depending on
the specific value of the ratio vF /cs, different regimes
emerge. Our results imply that if phase fluctuations destroy
the superconducting order in underdoped cuprates, we
should expect a protected chirally symmetric critical phase—
i.e., the pseudogap within this theory—as doping decreases,
before we reach the antiferromagnetic region in the phase
diagram. Details of how this sequence will take place depend
on the specific value of the gauge-field velocity cs for differ-
ent compounds. We hope that our results will contribute to
better understanding of the quantitative issues that surround
the value of Nc in various effective theories and motivate
further research on the anisotropic incarnations of the QED3
theory.

ACKNOWLEDGMENTS

We thank T. Senthil for useful comments. This work was
supported in part by the NSF under Grant No. DMR-
0531159.

1 J. Schwinger, Phys. Rev. 73, 416 �1948�.
2 M. Franz and Z. Tesanovic, Phys. Rev. Lett. 87, 257003 �2001�.
3 M. Franz, Z. Tešanović, and O. Vafek, Phys. Rev. B 66, 054535

�2002�.
4 M. Hermele, T. Senthil, and M. P. A. Fisher, Phys. Rev. B 72,

104404 �2005�.
5 S. Saremi and P. A. Lee, Phys. Rev. B 75, 165110 �2007�.
6 I. F. Herbut, V. Juričić, and B. Roy, Phys. Rev. B 79, 085116

�2009� and references therein.
7 O. Vafek, Z. Tesanovic, and M. Franz, Phys. Rev. Lett. 89,

157003 �2002�.
8 I. F. Herbut, Phys. Rev. Lett. 88, 047006 �2002�.
9 Z. Tesanovic, O. Vafek, and M. Franz, Phys. Rev. B 65,

180511�R� �2002�.
10 T. Balaban and A. Jaffe, Fundamental Problems of Gauge Field

Theory, in Constructive Gauge Theory, edited by G. Velo and A.
S. Wightman, Erice Summer School, �Plenum Press, 1985�, p.
207.

11 F. Lindemann, Z. Phys. C 11, 609 �1910�.
12 S. Hands and I. O. Thomas, Phys. Rev. B 72, 054526 �2005�.
13 I. O. Thomas and S. Hands, Phys. Rev. B 75, 134516 �2007�.
14 C. Strouthos and J. B. Kogut, J. Phys.: Conf. Ser. 150, 052247

�2009�.
15 R. Pisarski, Phys. Rev. D 29, 2423 �1984�.
16 D. Nash, Phys. Rev. Lett. 62, 3024 �1989�.
17 T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Phys. Rev.

Lett. 60, 2575 �1988�.
18 D. J. Lee and I. F. Herbut, Phys. Rev. B 66, 094512 �2002�.
19 V. Stanev �unpublished�.
20 E. Dagotto, J. B. Kogut, and A. Kocić, Phys. Rev. Lett. 62, 1083

�1989�.
21 A. Concha �unpublished�.
22 V. P. Gusynin, A. H. Hams, and M. Reenders, Phys. Rev. D 53,

2227 �1996�.
23 P. Maris, Phys. Rev. D 52, 6087 �1995�.
24 R. K. Kaul, Y. B. Kim, S. Sachdev, and T. Senthil, Nat. Phys. 4,

28 �2008�.
25 In Ref. 24 the authors claim that fermionic anisotropy goes to

one, and thus they obtain the simplified model we used to show
that this can be thought as a model in which there are anisotropic
couplings in the Maxwellian term. Given that the number of
fermions in physical systems is modest it would be interesting to
analyze the consequences of having such anisotropic couplings.

CRITERION FOR THE CRITICAL NUMBER OF FERMIONS… PHYSICAL REVIEW B 79, 214525 �2009�

214525-9


